Use the following parts to find
A^(7)
, where
A=[[-6,18],[6,6]]
. (a) (1 point) Given the eigenvalues are
\lambda _(1)=12
and
\lambda _(2)=-12
with corresponding eigenvectors
v_(1)=[[1],[1]]
and
v_(1)=[[-3],[1]]
, find the invertible matrix
P
to diagonalize
A
, i.e.,
A=PDP^(-1)
.
P=
(b) (1 point) Find
P^(-1)
.
P^(-1)=
(c) (1 point) Write the diagonal matrix
D
.
D=
(d) (2 points) Derive a general formula involving
k
for
A^(k)
using the fact that
A=PDP^(-1)
. Start from
A^(2)
, then
A^(3)
, to generate
A^(k)
. HINT: Only work in variables
PDP^(-1)
for
A^(2)
and
A^(3)
. WORK:
A^(2)=
A^(3)=
A^(k)=
(e) (2 points) Find
A^(7)
(Do not multiply
A
by itself 7 times. This will earn 0 points).
A^(7)=