Let A=[[-4,2,8],[2,-7,4],[8,4,8]].
The eigenvalues of the real symmetric matrix A are \lambda _(1)=13 and \lambda _(2)=-8.
An orthonormal basis for the eigenspace for \lambda _(1)=13 is B_(1)={u_(1)} where
u_(1)=[[,|],[,|]]
and an orthonormal basis for the eigenspace for \lambda _(2)=-8 is B_(2)={u_(2),u_(3)} where
u_(2)=[[,|],[,|]],u_(3)=[]